Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.227
Filtrar
1.
Sci Rep ; 14(1): 8050, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580665

RESUMO

Pregnenolone is a key intermediate in the biosynthesis of many steroid hormones and neuroprotective steroids. Sulfotransferase family cytosolic 2B member 1 (SULT2B1a) has been reported to be highly selective to sulfate pregnenolone. This study aimed to clarify the effect of missense single nucleotide polymorphisms (SNPs) of the human SULT2B1 gene on the sulfating activity of coded SULT2B1a allozymes toward Pregnenolone. To investigate the effects of single nucleotide polymorphisms of the SULT2B1 gene on the sulfation of pregnenolone by SULT2B1a allozymes, 13 recombinant SULT2B1a allozymes were generated, expressed, and purified using established procedures. Human SULT2B1a SNPs were identified by a comprehensive database search. 13 SULT2B1a nonsynonymous missense coding SNPs (cSNPs) were selected, and site-directed mutagenesis was used to generate the corresponding cDNAs, packaged in pGEX-2TK expression vector, encoding these 13 SULT2B1a allozymes, which were bacterially expressed in BL21 E. coli cells and purified by glutathione-Sepharose affinity chromatography. Purified SULT2B1a allozymes were analyzed for sulfating activities towards pregnenolone. In comparison with the wild-type SULT2B1a, of the 13 allozymes, 11 showed reduced activity toward pregnenolone at 0.1 µM. Specifically, P134L and R259Q allozymes, reported to be involved in autosomal-recessive congenital ichthyosis, displayed low activity (1-10%) toward pregnenolone. The findings of this study may demonstrate the impact of genetic polymorphism on the sulfation of pregnenolone in individuals with different SULT2B1 genotypes.


Assuntos
Isoenzimas , Pregnenolona , Humanos , Isoenzimas/metabolismo , Escherichia coli/metabolismo , Sulfotransferases/metabolismo , Polimorfismo de Nucleotídeo Único
2.
Int J Mol Sci ; 25(5)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38474230

RESUMO

Sulfonation, primarily facilitated by sulfotransferases, plays a crucial role in the detoxification pathways of endogenous substances and xenobiotics, promoting metabolism and elimination. Traditionally, this bioconversion has been attributed to a family of human cytosolic sulfotransferases (hSULTs) known for their high sequence similarity and dependence on 3'-phosphoadenosine 5'-phosphosulfate (PAPS) as a sulfo donor. However, recent studies have revealed the presence of PAPS-dependent sulfotransferases within gut commensals, indicating that the gut microbiome may harbor a diverse array of sulfotransferase enzymes and contribute to detoxification processes via sulfation. In this study, we investigated the prevalence of sulfotransferases in members of the human gut microbiome. Interestingly, we stumbled upon PAPS-independent sulfotransferases, known as aryl-sulfate sulfotransferases (ASSTs). Our bioinformatics analyses revealed that members of the gut microbial genus Sutterella harbor multiple asst genes, possibly encoding multiple ASST enzymes within its members. Fluctuations in the microbes of the genus Sutterella have been associated with various health conditions. For this reason, we characterized 17 different ASSTs from Sutterella wadsworthensis 3_1_45B. Our findings reveal that SwASSTs share similarities with E. coli ASST but also exhibit significant structural variations and sequence diversity. These differences might drive potential functional diversification and likely reflect an evolutionary divergence from their PAPS-dependent counterparts.


Assuntos
Burkholderiales , Microbioma Gastrointestinal , Humanos , Escherichia coli/metabolismo , Sulfotransferases/metabolismo
3.
Int J Mol Sci ; 25(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38396748

RESUMO

Dehydroepiandrosterone (DHEA), a precursor of steroid sex hormones, is synthesized by steroid 17-alpha-hydroxylase/17,20-lyase (CYP17A1) with the participation of microsomal cytochrome b5 (CYB5A) and cytochrome P450 reductase (CPR), followed by sulfation by two cytosolic sulfotransferases, SULT1E1 and SULT2A1, for storage and transport to tissues in which its synthesis is not available. The involvement of CYP17A1 and SULTs in these successive reactions led us to consider the possible interaction of SULTs with DHEA-producing CYP17A1 and its redox partners. Text mining analysis, protein-protein network analysis, and gene co-expression analysis were performed to determine the relationships between SULTs and microsomal CYP isoforms. For the first time, using surface plasmon resonance, we detected interactions between CYP17A1 and SULT2A1 or SULT1E1. SULTs also interacted with CYB5A and CPR. The interaction parameters of SULT2A1/CYP17A1 and SULT2A1/CYB5A complexes seemed to be modulated by 3'-phosphoadenosine-5'-phosphosulfate (PAPS). Affinity purification, combined with mass spectrometry (AP-MS), allowed us to identify a spectrum of SULT1E1 potential protein partners, including CYB5A. We showed that the enzymatic activity of SULTs increased in the presence of only CYP17A1 or CYP17A1 and CYB5A mixture. The structures of CYP17A1/SULT1E1 and CYB5A/SULT1E1 complexes were predicted. Our data provide novel fundamental information about the organization of microsomal CYP-dependent macromolecular complexes.


Assuntos
Complexos Multienzimáticos , Esteroide 17-alfa-Hidroxilase , Sulfato de Desidroepiandrosterona , Complexos Multienzimáticos/metabolismo , Esteroide 17-alfa-Hidroxilase/metabolismo , Oxirredução , Esteroides , Ressonância de Plasmônio de Superfície , Sulfotransferases/genética , Sulfotransferases/metabolismo
4.
Clin Transl Med ; 14(2): e1587, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38372484

RESUMO

Metastasis is responsible for at least 90% of colon cancer (CC)-related deaths. Lipid metabolism is a critical factor in cancer metastasis, yet the underlying mechanism requires further investigation. Herein, through the utilisation of single-cell sequencing and proteomics, we identified sulfotransferase SULT2B1 as a novel metastatic tumour marker of CC, which was associated with poor prognosis. CC orthotopic model and in vitro assays showed that SULT2B1 promoted lipid metabolism and metastasis. Moreover, SULT2B1 directly interacted with SCD1 to facilitate lipid metabolism and promoted metastasis of CC cells. And the combined application of SCD1 inhibitor CAY with SULT2B1- konockout (KO) demonstrated a more robust inhibitory effect on lipid metabolism and metastasis of CC cells in comparison to sole application of SULT2B1-KO. Notably, we revealed that lovastatin can block the SULT2B1-induced promotion of lipid metabolism and distant metastasis in vivo. Further evidence showed that SMC1A transcriptionally upregulated the expression of SULT2B1. Our findings unveiled the critical role of SULT2B1 in CC metastasis and provided a new perspective for the treatment of CC patients with distant metastasis.


Assuntos
Neoplasias do Colo , Metabolismo dos Lipídeos , Humanos , Metabolismo dos Lipídeos/genética , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Sulfotransferases/genética , Sulfotransferases/metabolismo , Estearoil-CoA Dessaturase/metabolismo
5.
Nat Commun ; 15(1): 1326, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351061

RESUMO

Heparan sulfate (HS) polysaccharides are major constituents of the extracellular matrix, which are involved in myriad structural and signaling processes. Mature HS polysaccharides contain complex, non-templated patterns of sulfation and epimerization, which mediate interactions with diverse protein partners. Complex HS modifications form around initial clusters of glucosamine-N-sulfate (GlcNS) on nascent polysaccharide chains, but the mechanistic basis underpinning incorporation of GlcNS itself into HS remains unclear. Here, we determine cryo-electron microscopy structures of human N-deacetylase-N-sulfotransferase (NDST)1, the bifunctional enzyme primarily responsible for initial GlcNS modification of HS. Our structures reveal the architecture of both NDST1 deacetylase and sulfotransferase catalytic domains, alongside a non-catalytic N-terminal domain. The two catalytic domains of NDST1 adopt a distinct back-to-back topology that limits direct cooperativity. Binding analyses, aided by activity-modulating nanobodies, suggest that anchoring of the substrate at the sulfotransferase domain initiates the NDST1 catalytic cycle, providing a plausible mechanism for cooperativity despite spatial domain separation. Our data shed light on key determinants of NDST1 activity, and describe tools to probe NDST1 function in vitro and in vivo.


Assuntos
Heparitina Sulfato , Sulfotransferases , Humanos , Microscopia Crioeletrônica , Heparitina Sulfato/metabolismo , Domínio Catalítico , Sulfotransferases/metabolismo , Matriz Extracelular/metabolismo
6.
Dev Growth Differ ; 66(3): 248-255, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38326088

RESUMO

Wnt is a family of secreted signaling proteins involved in the regulation of cellular processes, including maintenance of stem cells, carcinogenesis, and cell differentiation. In the context of early vertebrate embryogenesis, graded distribution of Wnt proteins has been thought to regulate positional information along the antero-posterior axis. However, understanding of the molecular basis for Wnt spatial distribution remains poor. Modified states of heparan sulfate (HS) proteoglycans are essential for Wnt8 localization, because depletion of N-deacetylase/N-sulfotransferase 1 (NDST1), a modification enzyme of HS chains, decreases Wnt8 levels and NDST1 overexpression increases Wnt8 levels on the cell surface. Since overexpression of NDST1 increases both deacetylation and N-sulfation of HS chains, it is not clear which function of NDST1 is actually involved in Wnt8 localization. In the present study, we generated an NDST1 mutant that specifically increases deacetylation, but not N-sulfation, of HS chains in Xenopus embryos. Unlike wild-type NDST1, this mutant did not increase Wnt8 accumulation on the cell surface, but it reduced canonical Wnt signaling, as determined with the TOP-Flash reporter assay. These results suggest that N-sulfation of HS chains is responsible for localization of Wnt8 and Wnt8 signaling, whereas deacetylation has an inhibitory effect on canonical Wnt signaling. Consistently, overexpression of wild-type NDST1, but not the mutant, resulted in small eyes in Xenopus embryos. Thus, our NDST1 mutant enables us to dissect the regulation of Wnt8 localization and signaling by HS proteoglycans by specifically manipulating the enzymatic activities of NDST1.


Assuntos
Heparitina Sulfato , Proteínas Wnt , Via de Sinalização Wnt , Animais , Heparitina Sulfato/metabolismo , Proteoglicanas , Sulfotransferases/genética , Sulfotransferases/metabolismo , Xenopus laevis/metabolismo , Amidoidrolases/genética , Amidoidrolases/metabolismo , Proteínas Wnt/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo
7.
Steroids ; 201: 109335, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37951289

RESUMO

Sulfation and desulfation of steroids are opposing processes that regulate the activation, metabolism, excretion, and storage of steroids, which account for steroid homeostasis. Steroid sulfation and desulfation are catalyzed by cytosolic sulfotransferase and steroid sulfatase, respectively. By modifying and regulating steroids, cytosolic sulfotransferase (SULT) and steroid sulfatase (STS) are also involved in the pathophysiology of steroid-related diseases, such as hormonal dysregulation, metabolic disease, and cancer. The estrogen sulfotransferase (EST, or SULT1E1) is a typical member of the steroid SULTs. This review is aimed to summarize the roles of SULT1E1 and STS in steroid homeostasis and steroid-related diseases.


Assuntos
Doenças Metabólicas , Neoplasias , Humanos , Esteril-Sulfatase , Sulfotransferases/metabolismo , Esteroides , Homeostase
8.
Anim Sci J ; 94(1): e13894, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38054387

RESUMO

Chondroitin sulfate/dermatan sulfate (CS/DS) is a member of glycosaminoglycans (GAGs) found in animal tissues. Major CS/DS subclasses, O, A, C, D, and E units, exist based on the sulfation pattern in d-glucuronic acid (GlcA) and N-acetyl-d-galactosamine repeating units. DS is formed when GlcA is epimerized into l-iduronic acid. Our study aimed to analyze the CS/DS profile in 3 T3-L1 cells before and after adipogenic induction. CS/DS contents, molecular weight (Mw), and sulfation pattern were analyzed by using high-performance liquid chromatography. CS/DS synthesis- and sulfotransferase-related genes were analyzed by reverse transcription real-time PCR. CS/DS amount was significantly decreased in the differentiated (DI) group compared to the non-differentiated (ND) group, along with a lower expression of CS biosynthesis-related genes, chondroitin sulfate N-acetylgalactosaminyltransferase 1 and 2, as well as chondroitin polymerizing factor. GAGs in the DI group also showed lower Mw than those of ND. Furthermore, the A unit was the major CS/DS in both groups, with a proportionally higher CS-A in the DI group. This was consistent with the expression of carbohydrate sulfotransferase 12 that encodes chondroitin 4-O-sulfotransferase, for CS-A formation. These qualitative and quantitative changes in CS/DS and CS/DS-synthases before and after adipocyte differentiation reveal valuable insights into adipocyte development.


Assuntos
Sulfatos de Condroitina , Dermatan Sulfato , Animais , Sulfatos de Condroitina/análise , Sulfatos de Condroitina/química , Sulfatos de Condroitina/metabolismo , Dermatan Sulfato/análise , Dermatan Sulfato/metabolismo , Dermatan Sulfato/farmacologia , Glicosaminoglicanos/metabolismo , Sulfotransferases/genética , Sulfotransferases/metabolismo , Diferenciação Celular
9.
Discov Med ; 35(179): 1147-1159, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38058080

RESUMO

BACKGROUND: Emerging evidence indicates the importance of heparan sulfate 6-O-sulfotransferase 2 (HS6ST2) in a number of developmental processes. Little is known regarding its biological function in regulating cervical cancer (CC) progression. In this study, we aim to explore the role of HS6ST2 in CC progression. METHODS: The transcriptome sequencing data of CC tissues from three databases, GSE64217, GSE138080, and GSE63514, was examined for genes with significant changes. The expression profile for HS6ST2 within CC tissue was then assessed through fluorescence quantitative PCR and immunohistochemistry and compared to data from patients with clinicopathological features. A multivariate survival analysis was performed using the COX regression. The real-time quantitative PCR assessed the HS6ST2 expression profile within CC cellular cultures. The results of knocking down HS6ST2, considering the proliferative activity and invasiveness of CC cultures in vitro, were detected through cell viability assay, clonogenic assessment, tumorsphere formation analysis, 3D invasion experiment and transwell assay. The impact of HS6ST2 knockdown in CC proliferation was also evaluated in vivo using a nude mice model. RESULTS: HS6ST2 was severely upregulated within CC tissues across the three explored databases (GSE64217, GSE138080, and GSE63514). Fluorescent quantitative PCR and immunohistochemistry experiments identified HS6ST2 as highly upregulated within patients CC tissues. Survival analysis taking into account the parameters of lymph node metastasis, Federation of Gynecology and Obstetrics (FIGO) stage, depth of invasion, pathological grade, and HS6ST2 expression level demonstrated that individuals with downregulated HS6ST2 exhibited considerably extended progression-free survival (PFS) and overall survival (OS) in comparison to upregulated HS6ST2 cases. According to the findings of COX univariate analysis, the parameters lymph node metastasis, FIGO stage, depth of invasion, pathological grade, and HS6ST2 expression level, all showed a statistically significant correlation with effect upon prognosis of CC patients. The FIGO stage, depth of invasion and expression level of HS6ST2 were identified as independent risk variables influencing CC case prognosis within subsequent COX multivariate analysis. Cell function experiments proved that HS6ST2 knockdown can considerably diminish the proliferative potential, stemness and invasive traits of CC cells. Tumor formation experiments in nude mice in vivo demonstrated that knocking down HS6ST2 can significantly thwart CC cellular proliferative properties within animal models. CONCLUSIONS: The clinicopathological features and the survival time of the patients significantly correlate with the level of HS6ST2 expression in CC tissue samples.


Assuntos
Neoplasias do Colo do Útero , Animais , Feminino , Humanos , Camundongos , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Metástase Linfática , Camundongos Nus , Prognóstico , Sulfotransferases/genética , Sulfotransferases/metabolismo , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia
10.
Int J Mol Sci ; 24(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38069221

RESUMO

Sulfotransferases (SULTs) are phase II metabolizing enzymes catalyzing the sulfoconjugation from the co-factor 3'-Phosphoadenosine 5'-Phosphosulfate (PAPS) to a wide variety of endogenous compounds, drugs and natural products. Although SULT1A1 and SULT1A3 share 93% identity, SULT1A1, the most abundant SULT isoform in humans, exhibits a broad substrate range with specificity for small phenolic compounds, while SULT1A3 displays a high affinity toward monoamine neurotransmitters like dopamine. To elucidate the factors determining the substrate specificity of the SULT1 isoenzymes, we studied the dynamic behavior and structural specificities of SULT1A1 and SULT1A3 by using molecular dynamics (MD) simulations and ensemble docking of common and specific substrates of the two isoforms. Our results demonstrated that while SULT1A1 exhibits a relatively rigid structure by showing lower conformational flexibility except for the lip (loop L1), the loop L2 and the cap (L3) of SULT1A3 are extremely flexible. We identified protein residues strongly involved in the recognition of different substrates for the two isoforms. Our analyses indicated that being more specific and highly flexible, the structure of SULT1A3 has particularities in the binding site, which are crucial for its substrate selectivity.


Assuntos
Isoenzimas , Sulfotransferases , Humanos , Sulfotransferases/metabolismo , Especificidade por Substrato , Sítios de Ligação , Isoenzimas/metabolismo , Arilsulfotransferase/metabolismo
11.
Nat Commun ; 14(1): 7297, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37949843

RESUMO

Sulfonation as one of the most important modification reactions in nature is essential for many biological macromolecules to function. Development of green sulfonate group donor regeneration systems to efficiently sulfonate compounds of interest is always attractive. Here, we design and engineer two different sulfonate group donor regeneration systems to boost the biosynthesis of sulfated compounds. First, we assemble three modules to construct a 3'-phosphoadenosine-5'-phosphosulfate (PAPS) regeneration system and demonstrate its applicability for living cells. After discovering adenosine 5'-phosphosulfate (APS) as another active sulfonate group donor, we engineer a more simplified APS regeneration system that couples specific sulfotransferase. Next, we develop a rapid indicating system for characterizing the activity of APS-mediated sulfotransferase to rapidly screen sulfotransferase variants with increased activity towards APS. Eventually, the active sulfonate group equivalent values of the APS regeneration systems towards trehalose and p-coumaric acid reach 3.26 and 4.03, respectively. The present PAPS and APS regeneration systems are environmentally friendly and applicable for scaling up the biomanufacturing of sulfated products.


Assuntos
Fosfoadenosina Fosfossulfato , Sulfatos , Sulfotransferases/genética , Sulfotransferases/metabolismo , Cinética
12.
Methods Enzymol ; 689: 332-352, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37802577

RESUMO

Conjugation of steroids and sterol compounds with a sulfonate group is a major pathway in the regulation of their activity, synthesis and excretion. Three human cytosolic sulfotransferases are highly involved in the sulfonation of sterol compounds. SULT1E1 has a low nM affinity for estrogen sulfonation and also conjugates non-aromatic steroids with a significantly lower affinity. SULT2A1 is responsible for the high levels of fetal and adult dehydroepiandrosterone (DHEA) sulfate synthesis in the adrenal gland as well as many 3α and 3ß-hydroxysteroids and bile acids. SULT2B1b is responsible for the majority of cholesterol sulfation in tissues as well as conjugating 3ß-hydroxysteroids. Although there are multiple methods for assaying cytosolic SULT activity, two relatively simple, rapid and versatile assays for steroid sulfonation are described. The first method utilizes radiolabeled substrates and organic solvent extraction to isolate the radiolabeled product from the aqueous phase. The second assay utilizes 35S-3'-phosphoadenosine 5'-phosphosulfate (PAPS) to generate 35S-conjugated products that are resolved by thin layer chromatography. Both assays useful in situations requiring measurement of SULT activity in a timely manner.


Assuntos
Esteroides , Sulfotransferases , Adulto , Humanos , Hidroxiesteroides , Sulfotransferases/metabolismo , Esteróis
13.
Protein Pept Lett ; 30(10): 821-829, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37724676

RESUMO

Estrogen plays a key role in the development and progression of many malignant tumours, and the regulation of estrogen levels involves several metabolic pathways. Among these pathways, estrogen sulfotransferase (SULT1E1) is the enzyme with the most affinity for estrogen and is primarily responsible for catalysing the metabolic reaction of estrogen sulphation. Relevant studies have shown significant differences in the expression of SULT1E1 in different malignant tumours, suggesting that SULT1E1 plays a dual role in malignant tumours, both inhibiting the growth of malignant tumours and promoting their development. In addition, the expression level of SULT1E1 may be regulated by a variety of factors, which in turn affect the growth and therapeutic effects of malignant tumours. The aim of this paper is to review the mechanism of action of SULT1E1 in malignant tumours and the mechanisms that are regulated, in order to provide potential targets for the treatment of malignant tumour patients in the future and theoretical support for the realisation of more personalised and effective therapeutic regimens.


Assuntos
Estrogênios , Neoplasias , Humanos , Estrogênios/metabolismo , Sulfotransferases/genética , Sulfotransferases/metabolismo
14.
PLoS Pathog ; 19(9): e1011487, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37747931

RESUMO

Select prion diseases are characterized by widespread cerebral plaque-like deposits of amyloid fibrils enriched in heparan sulfate (HS), a abundant extracellular matrix component. HS facilitates fibril formation in vitro, yet how HS impacts fibrillar plaque growth within the brain is unclear. Here we found that prion-bound HS chains are highly sulfated, and that the sulfation is essential for accelerating prion conversion in vitro. Using conditional knockout mice to deplete the HS sulfation enzyme, Ndst1 (N-deacetylase / N-sulfotransferase) from neurons or astrocytes, we investigated how reducing HS sulfation impacts survival and prion aggregate distribution during a prion infection. Neuronal Ndst1-depleted mice survived longer and showed fewer and smaller parenchymal plaques, shorter fibrils, and increased vascular amyloid, consistent with enhanced aggregate transit toward perivascular drainage channels. The prolonged survival was strain-dependent, affecting mice infected with extracellular, plaque-forming, but not membrane bound, prions. Live PET imaging revealed rapid clearance of recombinant prion protein monomers into the CSF of neuronal Ndst1- deficient mice, neuronal, further suggesting that HS sulfate groups hinder transit of extracellular prion protein monomers. Our results directly show how a host cofactor slows the spread of prion protein through the extracellular space and identify an enzyme to target to facilitate aggregate clearance.


Assuntos
Neurônios , Doenças Priônicas , Príons , Sulfotransferases , Animais , Camundongos , Heparitina Sulfato/metabolismo , Camundongos Knockout , Neurônios/enzimologia , Doenças Priônicas/metabolismo , Proteínas Priônicas/genética , Príons/metabolismo , Sulfotransferases/genética , Sulfotransferases/metabolismo
15.
Biochem Biophys Res Commun ; 677: 149-154, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37586213

RESUMO

Glucosinolates (GSLs), a class of secondary metabolites found in Brassicaceae plants, play important roles in plant defense and contribute distinct flavors and aromas when used as food ingredients. Following tissue damage, GSLs undergo enzymatic hydrolysis to release bioactive volatile compounds. Understanding GSL biosynthesis and enzyme involvement is crucial for improving crop quality and advancing agriculture. Plant sulfotransferases (SOTs) play a key role in the final step of GSL biosynthesis by transferring sulfate groups to the precursor molecules. In the present study, we investigated the enzymatic reaction mechanism and broad substrate specificity of Arabidopsis thaliana sulfotransferase AtSOT16, which is involved in GSL biosynthesis, using crystal structure analysis. Our analysis revealed the specific catalytic residues involved in the sulfate transfer reaction and supported the hypothesis of a concerted acid-base catalytic mechanism. Furthermore, the docking models showed a strong correlation between the substrates with high predicted binding affinities and those experimentally reported to exhibit high activity. These findings provide valuable insights into the enzymatic reaction mechanisms and substrate specificity of GSL biosynthesis. The information obtained in this study may contribute to the development of novel strategies for manipulating GSL synthesis pathways in Brassica plants and has potential agricultural applications.


Assuntos
Arabidopsis , Brassica , Arabidopsis/metabolismo , Glucosinolatos/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Brassica/metabolismo , Sulfotransferases/metabolismo
16.
Dev Dyn ; 252(12): 1407-1427, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37597164

RESUMO

BACKGROUND: Members of the sulfotransferase superfamily (SULT) influence the activity of a wide range of hormones, neurotransmitters, metabolites and xenobiotics. However, their roles in developmental processes are not well characterized even though they are expressed during embryogenesis. We previously found in a microarray screen that Six1 up-regulates LOC100037047, which encodes XB5850668.L, an uncharacterized sulfotransferase. RESULTS: Since Six1 is required for patterning the embryonic ectoderm into its neural plate, neural crest, preplacodal and epidermal domains, we used loss- and gain-of function assays to characterize the role of XB5850668.L during this process. Knockdown of endogenous XB5850668.L resulted in the reduction of epidermal, neural crest, cranial placode and otic vesicle gene expression domains, concomitant with neural plate expansion. Increased levels had minimal effects, but infrequently expanded neural plate and neural crest gene domains, and infrequently reduced cranial placode and otic vesicle gene domains. Mutation of two key amino acids in the sulfotransferase catalytic domain required for PAPS binding and enzymatic activity tended to reduce the effects of overexpressing the wild-type protein. CONCLUSIONS: Our analyses indicates that XB5850668.L is a member of the SULT2 family that plays important roles in patterning the embryonic ectoderm. Some aspects of its influence likely depend on sulfotransferase activity.


Assuntos
Ectoderma , Crista Neural , Crista Neural/metabolismo , Crânio/metabolismo , Desenvolvimento Embrionário/genética , Sulfotransferases/genética , Sulfotransferases/metabolismo , Regulação da Expressão Gênica no Desenvolvimento
17.
Biochem Med (Zagreb) ; 33(3): 030503, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37545696

RESUMO

Carbohydrate sulfotransferases (CHST) catalyse the biosynthesis of proteoglycans that enable physical interactions and signalling between different neighbouring cells in physiological and pathological states. The study aim was to provide an overview of emerging diagnostic and prognostic applications of CHST. PubMed database search was conducted using the keywords "carbohydrate sulfotransferase" together with appropriate inclusion and exclusion criteria, whereby 41 publications were selected. Additionally, 40 records on CHST genetic and biochemical properties were hand-picked from UniProt, GeneCards, InterPro, and neXtProt databases. Carbohydrate sulfotransferases have been applied mainly in diagnostics of connective tissue disorders, cancer and inflammations. The lack of CHST activity was found in congenital connective tissue disorders while CHST overexpression was detected in different malignancies. Mutations of CHST3 gene cause skeletal dysplasia, chondrodysplasia, and autosomal recessive multiple joint dislocations while increased tissue expression of CHST11, CHST12 and CHST15 is an unfavourable prognostic factor in ovarian cancer, glioblastoma and pancreatic cancer, respectively. Recently, CHST11 and CHST15 overexpression in the vascular smooth muscle cells was linked to the severe lung pathology in COVID-19 patients. Promising CHST diagnostic and prognostic applications have been described but larger clinical studies and robust analytical procedures are required for the more reliable diagnostic performance estimations.


Assuntos
COVID-19 , Humanos , Prognóstico , Sulfotransferases/genética , Sulfotransferases/metabolismo , Mutação , Teste para COVID-19
18.
Life Sci Alliance ; 6(11)2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37550000

RESUMO

Disordered immune responses and cholesterol metabolism have been implicated in age-related macular degeneration (AMD), the leading cause of blindness in elderly individuals. SULT2B1, the key enzyme of sterol sulfonation, plays important roles in inflammation and cholesterol metabolism. However, the role and underlying mechanism of SULT2B1 in AMD have not been investigated thus far. Here, we report that SULT2B1 is specifically expressed in macrophages in choroidal neovascularization lesions. Sutl2b1 deficiency significantly reduced leakage areas and inhibited pathological angiogenesis by inhibiting M2 macrophage activation in vivo and in vitro. Mechanistically, loss of Sult2b1 activated LXRs and subsequently increased ABCA1 and ABCG1 (ABCA1/G1)-mediated cholesterol efflux from M2 macrophages. LXR inhibition (GSK2033 treatment) in Sult2b1 -/- macrophages reversed M2 polarization and decreased intracellular cholesterol capacity to promote pathological angiogenesis. In contrast to SULT2B1, STS, an enzyme of sterol desulfonation, protected against choroidal neovascularization development by activating LXR-ABCA1/G1 signalling to block M2 polarization. Collectively, these data reveal a cholesterol metabolism axis related to macrophage polarization in neovascular AMD.


Assuntos
Neovascularização de Coroide , Sulfotransferases , Degeneração Macular Exsudativa , Humanos , Inibidores da Angiogênese/metabolismo , Inibidores da Angiogênese/uso terapêutico , Colesterol/metabolismo , Neovascularização de Coroide/tratamento farmacológico , Neovascularização de Coroide/metabolismo , Neovascularização de Coroide/patologia , Macrófagos/metabolismo , Esteróis/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Acuidade Visual , Degeneração Macular Exsudativa/metabolismo , Sulfotransferases/metabolismo
19.
BMC Biol ; 21(1): 151, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37424015

RESUMO

BACKGROUND: Chronic kidney disease (CKD) accelerates atherosclerosis, but the mechanisms remain unclear. Tyrosine sulfation has been recognized as a key post-translational modification (PTM) in regulation of various cellular processes, and the sulfated adhesion molecules and chemokine receptors have been shown to participate in the pathogenesis of atherosclerosis via enhancement of monocyte/macrophage function. The levels of inorganic sulfate, the essential substrate for the sulfation reaction, are dramatically increased in patients with CKD, which indicates a change of sulfation status in CKD patients. Thus, in the present study, we detected the sulfation status in CKD patients and probed into the impact of sulfation on CKD-related atherosclerosis by targeting tyrosine sulfation function. RESULTS: PBMCs from individuals with CKD showed higher amounts of total sulfotyrosine and tyrosylprotein sulfotransferase (TPST) type 1 and 2 protein levels. The plasma level of O-sulfotyrosine, the metabolic end product of tyrosine sulfation, increased significantly in CKD patients. Statistically, O-sulfotyrosine and the coronary atherosclerosis severity SYNTAX score positively correlated. Mechanically, more sulfate-positive nucleated cells in peripheral blood and more abundant infiltration of sulfated macrophages in deteriorated vascular plaques in CKD ApoE null mice were noted. Knockout of TPST1 and TPST2 decreased atherosclerosis and peritoneal macrophage adherence and migration in CKD condition. The sulfation of the chemokine receptors, CCR2 and CCR5, was increased in PBMCs from CKD patients. CONCLUSIONS: CKD is associated with increased sulfation status. Increased sulfation contributes to monocyte/macrophage activation and might be involved in CKD-related atherosclerosis. Inhibition of sulfation may suppress CKD-related atherosclerosis and is worthy of further study.


Assuntos
Aterosclerose , Sulfotransferases , Camundongos , Animais , Sulfotransferases/química , Sulfotransferases/genética , Sulfotransferases/metabolismo , Proteínas/metabolismo , Tirosina/metabolismo , Camundongos Knockout , Receptores de Quimiocinas/metabolismo , Aterosclerose/complicações , Processamento de Proteína Pós-Traducional
20.
Chem Biol Interact ; 382: 110628, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37442290

RESUMO

Metaxalone (MTX) is a central nervous system (CNS) depressant used for the treatment of acute skeletal muscle pain. Several cases of fatal overdose deaths in the clinical use of MTX, along with the presence of ischemic hepatitis in deceased patients, have been documented. The present study aimed to investigate the metabolic activation of MTX and to define the possible correlation between the metabolic activation and cytotoxicity of MTX. An oxidative metabolite (M1) and a GSH conjugate (M2) were observed in S9 fraction incubations as well as in rat primary hepatocyte culture after exposure to MTX. M1 and M2 were also observed in bile of MTX-treated rats. CYP2A6 was found to dominate the oxidation of MTX. Both methoxsalen (MTS, a CYP2A6 inhibitor) and 2,6-dichloro-4-nitrophenol (DCNP, a sulfotransferase inhibitor) dramatically decreased the formation of M2. Pre-treatment of primary hepatocytes with DCNP or MTS significantly decreased the susceptibility to the cytotoxicity of MTX.


Assuntos
Sistema Enzimático do Citocromo P-450 , Sulfotransferases , Ratos , Animais , Ativação Metabólica , Sulfotransferases/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Microssomos Hepáticos/metabolismo , Glutationa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...